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For a sequence S=(a,, a,,...,a,) of residuesmodn and for 0<j<n let
£.(S;j) denote the number of subsequences of S the sum of whose elements is
congruent to j mod . Proving a conjecture of Bulman-Fleming and Wang (see
[1]), Guichard, (see [2]), has recently shown that if m =n and #n is a power of 2
then for every such S and j, £,(S;/) is even. Here we present a different, much
shorter proof of a more general result. For § and j as above let E,(S; /) denote
the number of subsequences of S consisting of an even number of members whose
sum is congruent to jmodrn. Similarly, let O,(S;j) denote the number of
subsequences of § consisting of an odd number of members whose sum is
congruent to j mod n. Clearly f,(5;)) = E,.(S;)) + O,(S;)).

Theorem. Let n =pk be a prime power and let S = (a,, a,, . . ., a,,) be a sequence
of residues mod n. For each 1<i<m let b; be the maximum power of p that
divides a;, i.e. b; =max (p’:p’ | a;). Then

E.(S;))=0,(S;))(modp) forevery 0=j<n (1)

if and only if Y7L b, =n.
Proof. Define

g(x) = H (1 - x).

Let A(x) be the remainder in the quotient g(x)/(1 —x"). Clearly, for every
0=<j<n, the coefficient of x/ in hA(x) is precisely the difference E,(S;j)—
0,(S;J). However, over the field with p elements GF(p), 1 —x"=(1—x)", as n
is a power of p. Consequently, (1) holds if and only if (1 — x)" | g(x) over GF(p).
For each 1<=i=<m, a,=b;r;, where b; is a power of p and p does not divide r,.
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Therefore, (1 —x)% is the maximum power of 1 — x that divides, over GF(p), the
polynomial 1—x%=(1-x)*(1+x%+x*1+...+x0=D%)  We conclude that
(1—x)"|g(x) over GF(p) if and only if ¥,72, b,=n. As the former condition is
equivalent to (1), this completes the proof of the theorem. O

An immediate corollary of the above theorem is the following.

Corollary. Let n=p* be a prime power and let S=(a,, a,,...,a,) be a
sequence of residues modn. If m=n then E,(S;j)=0,(S;/)(mod p) for every
0=j<n.

As a special case of the last corollary notice that if n =2* is a power of 2 and
S=(a;, a,...,4a,) is a sequence of residues modn, where m=n, then
£:(8;7) = E.(S;]) + O,(S;)) is even for every 0 <j<n. This result was proved in
[2] in a different method. O
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